A Hybrid Parallel Preconditioner Using Incomplete Cholesky Factorization and Sparse Approximate Inversion
نویسندگان
چکیده
We have recently developed a preconditioning scheme that can be viewed as a hybrid of incomplete factorization and sparse approximate inversion methods. This hybrid scheme attempts to deliver the strengths of both types of preconditioning schemes to accelerate the convergence of Conjugate Gradients (CG) on multiprocessors. We provide an overview of our algorithm and report on initial results for some large sparse linear systems.
منابع مشابه
Parallel Hybrid Sparse Solvers Through Flexible Incomplete Cholesky Preconditioning
We consider parallel preconditioning schemes to accelerate the convergence of Conjugate Gradients (CG) for sparse linear system solution. We develop methods for constructing and applying preconditioners on multiprocessors using incomplete factorizations with selective inversion for improved latency-tolerance. We provide empirical results on the efficiency, scalability and quality of our precond...
متن کاملIncomplete Cholesky Parallel Preconditioners with Selective Inversion
Consider the solution of a large linear system when the coe cient matrix is sparse, symmetric, and positive de nite. One approach is the method of \conjugate gradient" (CG) with an incomplete Cholesky (IC) preconditioner (ICCG). A key problem with the design of a parallel ICCG solver is the bottleneck posed by repeated parallel sparse triangular solves to apply the preconditioner. Our work conc...
متن کاملA latency tolerant hybrid sparse solver using incomplete Cholesky factorization 3
Consider the solution of large sparse symmetric positive de nite linear systems using the preconditioned conjugate gradient method. On sequential architectures, incomplete Cholesky factorizations provide ef13 fective preconditioning for systems from a variety of application domains, some of which may have widely di ering preconditioning requirements. However, incomplete factorization based prec...
متن کاملA latency tolerant hybrid sparse solver using incomplete Cholesky factorization
Consider the solution of large sparse symmetric positive de nite linear systems using the preconditioned conjugate gradient method. On sequential architectures, incomplete Cholesky factorizations provide effective preconditioning for systems from a variety of application domains, some of which may have widely di ering preconditioning requirements. However, incomplete factorization based precond...
متن کاملA Multilevel Block Incomplete Cholesky Preconditioner for Solving Rectangular Sparse Matrices from Linear Least Squares Problems
An incomplete factorization method for preconditioning symmetric positive definite matrices is introduced to solve normal equations. The normal equations are formed as a means to solve rectangular matrices from linear least squares problems. The procedure is based on a block incomplete Cholesky factorization and a multilevel recursive strategy with an approximate Schur complement matrix formed ...
متن کامل